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Abstract. The far infrared longitudinal spin and density responses of two-dimensional quantum dots are dis-
cussed within local spin-density functional theory. The influence of a partial spin polarization, induced by
a perpendicular static magnetic field, is taken into account in the coupling of spin and density channels. As
an illustrative application, the case of a dot made of 5 electrons in parabolic confinement is discussed.

PACS. 73.20.Dx Electron states in low-dimensional structures – 78.20.Bh Theory, models and numerical
simulation

1 Introduction

Collective excitations induced in finite Fermi systems by
external probes are a subject of widespread interest be-
cause, in general, they provide relevant information about
the structure and interactions of these systems. For in-
stance, particular effort has been devoted to the study of
plasmon modes in the optical spectrum of metallic clus-
ters [1]. Recent progress in the fabrication of semiconduc-
tor structures has allowed the extension of these studies to
low-dimensional electronic systems. For two-dimensional
(2D) quantum dots, the experiments carried out by Siko-
rski and Merkt [2] and by Demel et al. [3], as well as sub-
sequent theoretical works [4–7], have shown that the far
infrared excitation spectrum of these systems is dominated
by dipole edge magnetoplasmon peaks. These are density
(charge) modes excited by the dipole operatorD% =

∑
i xi,

with the 2D dot located in the xy plane, that split into two
different dispersion branches when a magnetic field B is
applied perpendicularly to the dot [8].

For quantum dots with harmonic confinement by a po-
tential 1

2meω
2
0r

2, as a consequence of Kohn’s theorem [9],
the dipole operator D% excites only two collective states

at energies ω± =
√
ω2

0 + 1
4ω

2
c ±

1
2ωc, where ωc = eB/mec is

the cyclotron frequency. If the confining potential is not
harmonic, Kohn’s theorem does not hold, and while on one
hand, the energies of the modes depend on the number of
electrons in the dot, on the other hand, a richer excitation
spectrum appears.

Raman spectroscopy experiments on quantum dots
have recently detected spin (magnetization) as well as
charge modes and single particle (SP) excitations, and
have followed their evolution with low magnetic fields [10–
12]. The experiments have determined that the spin mode

lies close to the uncorrelated single-electron excitations,
which are much lower in energy than the magnetoplasmon
mode, and that magnetoplasmons can also be detected by
the use of spin-dependent probes. These are some basic
results that any consistent theory of spin and charge exci-
tations should describe.

The response to the spin-dependent dipole operator
Dm =

∑
i xiσ

z
i , where σzi is the corresponding Pauli ma-

trix, has been recently addressed by two of us [13] for the
case of unpolarized quantum dots without magnetic field.
Here we present an extension of that formalism to the case
of a quantum dot subjected to a perpendicular magnetic
field, which originates a B-dependent spin polarization in
its ground state (GS). We use the time-dependent local
spin-density approximation (TDLSDA) to obtain the re-
sponse equations to a longitudinal field. By longitudinal
we mean an external field which is either spin-independent
or dependent on the spin component parallel to the mag-
netic field, i.e., the z component. To illustrate the relevant
features of the TDLSDA response without excessive com-
putational effort, we present results obtained for the par-
ticular case of 5 electrons in parabolic confinement, which
is known to represent very well the experimental devices
for small- and medium-sized dots.

2 TDLSDA

The description of adiabatic linear oscillations induced by
external fields in the spin densities of an electronic system
was studied some time ago [14, 15]. It required the general-
ization of density functional theory to explicitly include the
electronic spin. When spin degeneracy is lost and the spin
magnetization has a constant direction, the relevant vari-
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ables for the description of the system are the spin densities
%↑ and %↓ or, equivalently, the total density %= %↑+%↓ and
magnetizationm= %↑−%↓.

2.1 Ground state

We consider a 2D quantum dot with a parabolic confin-
ing potential in the xy plane (with polar coordinates r θ):
V +(r) = 1

2me ω
2
0 r

2. The spin densities %σ, with σ =↑, ↓, are
built from the set of self-consistent Kohn–Sham orbitals
{ϕα}. As a consequence of circular symmetry, the ϕα are
eigenstates of the SP orbital angular momentum `z, i.e.,
ϕα(r, θ) = un`σ(r)e−i`θ , with `= 0,±1,±2 . . . . Then, the
GS electron density is given by %(r) =

∑
α nαu

2
α(r), while

the GS spin magnetization is expressed in terms of the spin
of orbital α, 〈σz〉α as m(r) =

∑
α nα〈σz〉αu

2
α(r). The oc-

cupation factors nα are those corresponding to the Fermi
distribution at a given temperature T .

Within the symmetric gauge for the vector potential,
the Kohn–Sham equations in the presence of a constant
magnetic field B in the z direction are[
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ϕα = εαϕα , (1)

where V H =
∫

dr ′%(r ′)/|r− r ′| is the Hartree potential.
In (1), we have used modified effective units in terms
of the parameters characterizing the host semiconductor
medium. For GaAs, we have taken ε = 12.4, m∗ = 0.067,
and g∗ =−0.44, which yield an effective length unit (Bohr
radius) a∗0 = 97.9 Å and an energy unit (Hartree) H∗ =
11.9 meV ≈ 95.6 cm−1. The exchange-correlation energy
density Exc(%,m) has been constructed from the results of
Tanatar and Ceperley [16] on the nonpolarized and fully
polarized 2D electron gas in the same way as in [17], i.e.,
using the von Barth and Hedin [18] prescription to interpo-
late between both regimes.

2.2 Linear response

Following [14, 15], we consider the variations δ%σ(r, ω) in-
duced in the GS spin densities %σ(r) by an external spin-
dependent field Fe−iωt. We denote the nontemporal de-
pendence as

F =
∑
σ

fσ(r) |σ〉〈σ| ≡

(
f↑(r)
f↓(r)

)
. (2)

For the dipole operators defined in the introduction, we

then have D% ≡

(
x
x

)
and Dm ≡

(
x
−x

)
. Notice that in (2)

we have assumed that in longitudinal response theory, the
external field is diagonal in spin space and thus can be rep-
resented as a two-component vector.

The spin-density correlation function χσσ′ relates the
induced densities to the external field as

δ%σ(r, ω) =
∑
σ′

∫
dr ′χσσ′(r, r

′;ω)fσ′(r
′) . (3)

For free (non interacting) particles, a similar relation holds

between the induced noninterating density δ%
(0)
σ (r, ω) and

the noninteracting spin-density correlation function χ
(0)
σσ′ ,

which is obtained from the Kohn–Sham SP orbitals

χ
(0)
σσ′

(r, r ′, ω)=δσ,σ′
∑
αβ

(nα−nβ)

ϕ∗α(r )ϕβ(r )ϕ∗β(r ′)ϕα(r ′)

εα− εβ +ω+ iη
, (4)

where the label α (β) refers to an SP level with spin σ (σ′).

Notice that χ
(0)
σσ′

is spin-diagonal in this case.
In TDLSDA, it is assumed that electrons respond as

free particles to the modified mean field, not to the external
one. This condition defines a new equation for the induced
densities. Using a matrix notation in which space integra-
tions are implicit, the TDLSDA equations are(

δ%↑
δ%↓

)
=

(
δ%

(0)
↑

δ%
(0)
↓

)

+

(
χ

(0)
↑↑ 0

0 χ
(0)
↓↓

)(
K↑↑K↑↓
K↓↑K↓↓

)(
δ%↑
δ%↓

)
. (5)

The kernelKσσ′ is the residual two-body interaction

Kσσ′(r1, r2) =
1

|r1− r2|
+
∂2Exc(%,m)

∂%σ∂%σ′

∣∣∣∣
gs

δ(r1− r2), (6)

where

∂2Exc

∂%σ∂%σ′
=
∂2Exc

∂%2
+ (ησ +ησ′)

∂2Exc

∂% ∂m

+ησησ′
∂2Exc

∂m2
(7)

with η↑ = 1, η↓ =−1.
For a nonpolarized (fully spin-degenerate) system, one

has χ
(0)
↑↑ = χ

(0)
↓↓ and ∂2Exc/∂% ∂m|gs = 0. It is easy to check

that the matrix equation (5) reduces to two uncoupled
equations for δ% = δ%↑+ δ%↓ and δm = δ%↑− δ%↓, induced
by D% and Dm, respectively. This constitutes the param-
agnetic limit of the longitudinal response with uncoupled
density and spin channels [13], in which the residual inter-
action consists of an exchange-correlation and a Coulomb
direct term in one case, and of an exchange-correlation
term only in the other.

In the general case, the two equations embodied in (5)
are coupled and have to be treated simultaneously. An im-
portant simplification follows from noting that the fields
D% and Dm couple only to the dipole components of the
δ%σ, χσσ′ , and Kσσ′ functions. In fact, the response to the
`=±1 fields,

D(±1)
% =

1

2
re±iθ

(
1
1

)
(8)

D(±1)
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1

2
re±iθ

(
1
−1

)
, (9)



Ll. Serra et al.: Longitudinal modes of quantum dots in magnetic fields 645

can be obtained independently. For a polarized system
having a nonzero magnetization in the GS, the ` = ±1
modes are not degenerate, and give rise to two excitation
branches with ∆Lz =±1, where Lz is the GS orbital angu-
lar momentum.

The dynamical polarizability αAB(ω) corresponding to
the expectation value of field A with the densities induced
by field B, where A and B are either D% orDm, is given by

αAB(ω) =−
(
fA∗↑ fA∗↓

)(δ%B↑
δ%B↓

)
(10)

Their imaginary parts are related to the strength functions
as SAB(ω) = 1

π
Im[αAB(ω)].

3 Numerical results

We report in the following numerical results for a quan-
tum dot of 5 electrons confined in a parabolic potential
with ω0 = 4.28 meV. A systematic analysis for different
confining potentials and a higher number of electrons will
be reported elsewhere. Figure 1 shows the dipole strength
functions for different magnetic fields. The numerical re-
sults have been obtained using a small but finite tem-
perature T ≤ 0.1 K and a parameter η = 0.006 H∗ in (4).
Solid and dotted lines correspond to S%% and Smm, re-
spectively, while the free particle response is represented
by the dashed line. We first notice that for B = 0, the
density response S%% has a single peak at exactly ω0, and
for B 6= 0, two peaks (magnetoplasmons) occur at energies

ω± =
√
ω2

0 + 1
4ω

2
c ±

1
2ωc. These are well-known facts which,

together with the fulfillment of the the f-sum rule in both
channels, constitute a test of our calculation.

The free response is concentrated in a small interval
around 2.5 meV at B = 0, and for increasing B, it splits
into two regions; the higher the magnetic field, the larger
the separation between them. This is naturally associated
with the appearance of quasi-SP Landau bands and two
possible types of electron-hole transition: the low-energy
intraband transition, and the high-energy interband tran-
sition, whose energy tends to h̄ωc as B increases.

A more interesting behavior is exhibited by the spin
response Smm, whose peaks are located at energies some-
what smaller than those of the free response. The different
shifts of the density and spin responses from the free one
are due to the well-known differences in the effective re-
sidual interaction in both channels, i.e., the interaction is
weak and attractive in the spin channel, because only the
exchange-correlation energy contributes to it, and strong
and repulsive in the density channel, because direct terms
also contribute.

The magnetoplasmon peaks can also be seen in the spin
response, although generally as low-intensity peaks. This
indicates that the magnetoplasmon mode can be excited
by a spin-dependent probe and is a manifestation of the
coupling between channels, which has been seen experi-
mentally [12]. For a parabolic confinement, the symmetric
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Fig. 1. Dipole strength in effective atomic units of the 5-
electron dot, discussed in the text, as a function of energy
(meV). Solid lines correspond to S%%, i.e., to the density re-
sponse toD%, and dotted lines to Smm, i.e., to the spin response
to Dm. Dashed lines represent the free particle strength func-
tion.

situation, namely the manifestation of the spin peaks in the
density response, is forbidden by Kohn’s theorem.

The manifestation of magnetoplasmons in the spin re-
sponse is sizeably enhanced because of a resonance mech-
anism that occurs when the magnetoplasmon and particu-
lar spin excitations are close in energy. This type of en-
hancement can be seen in the spin response at B = 1 T
(panel b of Fig. 1). The strength of these peaks also in-
creases as the dot becomes more and more spin-polarized
with higher magnetic fields (panel e).

The B dispersion of the main peaks in both spin and
density channels is shown in Fig. 2. The lines are drawn
as a guide to the eye. Quite interestingly, the energy of
the lower spin mode essentially vanishes for magnetic fields
in the region 3–3.5 T. This indicates that at these mag-
netic fields, the GS we have used (with circular symmetry)
is no longer stable against spin-density dipole oscillations.
We remark that at B = 0, a spin-wave instability of simi-
lar type has been recently found in [17] to appear for in-
creasing values of the rs parameter (decreasing electronic
surface densities). Our results indicate that this instabil-
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Fig. 2. B dispersion of the main peaks of the dot of Fig. 1. The
circles correspond to density modes and the triangles to spin
modes. The solid symbol corresponds to the filling factor ν = 1,
and the lines connect the more intense peaks.

ity can also be induced by applying a magnetic field to the
quantum dot.

At B = 4 T, the dot becomes fully spin-polarized, with
occupation of the five lowest angular momentum levels of
the first Landau band. It thus corresponds to filling factor
ν = 1. In this case, the spin and density responses coincide,
and the surviving excitations correspond to Kohn’s magne-
toplasmon modes.

4 Summary

In this contribution, we have discussed the longitudinal
spin and density responses of a quantum dot in a magnetic
field within TDLSDA. To our knowledge, this is the first
application of TDLSDA to the description of spin modes
in quantum dots at B 6= 0. As an application, we have ob-
tained the dipole modes for a dot made of 5 electrons in
a parabolic confining potential.

For a partially polarized dot, spin and density channels
are generally coupled. In parabolic confinement, this implies
that magnetoplasmons can also be seen in the spin channel.
In this case, the microscopic TDLSDA reproduces the exact
magnetoplasmon energies given by Kohn’s theorem.

The B dispersion of the spin modes shows that the
circularly symmetric dot becomes unstable against dipole
spin-density waves forB larger than a certain value. At full
polarization the theory gives the magnetoplasmons as the
only dipole excitations. Work to extend the present study
to other confining potentials and to the spin transverse re-
sponse in larger dots is underway.

This work has been performed under grants PB95-1249 and

PB95-0492 from CICYT, and 1998SGR00011 from Generalitat
de Catalunya. A.E. acknowldeges support from DGES, Spain.
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